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ABSTRACT

It is shown that by using the simplest construction of discrete dipoles,
the operation count for solving the Dirichlet problem of Poisson's equation
by the capacitance matrix method does not exceed constant times n2 log n,

n = 1/h for certain first and second order schemes of interpolating boundary

conditions.
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SIGNIFICANCE AND EXPLANATION

The Dirichlet problem for the Poisson equation is the following: Given a
function f and a function g , find a function u such that

uxx + uyy = f on @,
u =g on 9dQ.
Here ( 1is a simply connected domain with boundary 58 .

The problem has wide applications in electrostatics, elasticity, temper-
ature distributions and plasma physics. Its solution by finite difference or
finite elements methods have received considerable attention. It is
known that if @ is a rectangle, then fast Fourier transform methods are very

efficient in solving the linear system of equations arising from finite differ-

ence or finite element discretizations.

There seems to be no such short cut to the solution of these equations
when @ is a general region. In many conventional methods, the operation

count is usually proportional to N3/2

(N is the number of mesh points in
) while at least N computer storage is required. These methods are
therefore undesirable when N is very large. In this paper we describe an
algorithm and prove mathematically that the operation count of this algorithm
can be proportional to N log N. While some versions of our algorithm also

require at least N computer storage, there is one version that requires less

than N/3 computer storage.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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FAST POISSON SOLVERS ON GENERAL TWO DIMENSIONAL REGIONS
FOR THE DIRICHLET PROBLEM

A. S. L. Shieh

§1. Introduction

Over the past ten years, very fast numerical methods have been developed to solve
Poisson's or Helmholtz's equation on certain simple regions with Dirichlet, Neumann or
periodic boundary conditions. See e.g. (21, (3], [8], [91, [12], [19] and [21]. These
methods can only be used for regions and boundary conditions that allow for separation of
the variables. Typical examples are Poisson's or Helmholtz's equations in Cartesian co-
ordinates on rectangular regions with boundary conditions that do not change type along any
of the sides of the rectangle. In these special cases, the operation count for solving the
discrete problem is almost proportional to the number of mesh points.

The purpose of this paper is to establish similar results for the Poisson equation
on general regions. In this work we are only concerned with finite difference schemes
of first and second order accuracy for the Dirichlet problem on simply connected bounded
domains with smooth boundaries. A formal discrete potential theory motivated by the clas-
sical potential theory is incorporated into the so-called capacitance matrix method. It is
shown that by using the simplest construction of discrete dipoles in our Ansatz, it is
possible to have an algorithm the operation count of which is proportional to N2 log N,
where h = 1/n is the mesh size. Some numerical results are given in section 9 and a

brief survey of past work in this direction is given in section 8.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the Energy
Research and Development Administration.




§2. Certain results from classical potential theory.

We give only a very brief review of a few results of classical potential theory.

,

detailed exposition see e.g. [10,, [14], ([25] and ([28]. We define the potential |

from a charge distribution ¢ on a smooth boundary curve 3 by

(1/m)f p(&) logm ds(E) .
30

7 (x)

! _ - R L ’ .
Here x (xl'XZ)' & (51,52, and 1° = (xl El) (x, 52) . The Green's function

(1/2m) log T which we shall denote by G* satisfies

A(1/2T) logr = &(x) ,

where 6(x) is the delta function. Similarly the potential # of a dipole density I on

92 defined by

(2.1) Mx) = /mf[  u(g) ac*/3v,. ds(E) .
Eh) e

We adopt here the convention that the normal direction of 00 is towards the exterior of

the region § in which we want to solve our problem.

The interior Dirichlet problem can be reduced to a Fredholm integral equation of the

second kind if we make the double layer Ansatz as follows. Let

u(x) = =(1/2m) [ £(&) logr d&& + (1/m) [ w(&) 8G*/3vp ds(E) = u (x) +W(x) ,
Q R

for the solution of

-Au=f£f, xeQ
(2.2}
u=g, xe€ o

It can Se shown that the dipole density U satisfy the following integral equation

. * ")
(2.3) u+ (/m [ ube /90 )ds = g - usl = g.
0] Elo)

This is a well posed problem of the form
N
(2.4) (I + Klu=g ,

where K is a compact operator defined by the integral ahove.

resulting

If we instead attempt to use a single layer Ansatz for the Dirichlet problem we obtain a

Fredholm integral equation of the first kind. It has the form
V(x)-g-uslan, x e 90 ,
which is an ill posed problem.

To illustrate the distribution of the eigenvalues of the compact operator

in equation (2.4), we study the case when ( is an ellipse with

-ge

K




y = (a-b)/(a+b) where a and b are the half axes of the ellipse. It is known (see e.g.

P. 135 of [25]) that K = K® and

(2.5) A =2t e,

On the other hand, both the interior and exterior Neumann problems can also be reduced to
Fredholm integral equations of the second kind if we make the single layer Ansatz. The
charge density ; for the exterior Neumann problem satisfies

(T + KT)o = q“r ’
for some suitably chosen function q* defined on 9Q. The existence and uniqueness problems
for the solution of equation (2.3) can therefore be determined from that of equation (2.4)
and vice versa. Finally, we remark that the G* in equations (2.1) and (2.3) can be re-

placed by the Green's function on a sufficiently large rectangle with zero Dirichlet bound-

ary conditions.

-
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§3. The capacitance matrix method

In this section we develop a similar, formal potential theory for the discrete
problems arising from the original Dirichlet problem (2.2). See also Sections 3 and 4 of [29]
for a similar discussion. We shall assume that uniform mesh sizes in both coordinate directions
are used.

We replace the Laplace operator by the five-point formula. The fundamental solu-
tion (1/27m) log(l/r), used in Section 2, will be replaced by its discrete analogue, the dis-
crete Green's function on the entire plane, which we shall denote by G. Properties and
efficient methods of generating G and its undivided differences will be studied in Section 4.
An efficient method of computing Gv for arbitrary N * N vectors v 1is also given
in Section 4. We will denote by B the matrix representing the five-point discrete Laplacian

thh, using undivided differences, on the entire plane. We then divide the set of mesh points
into three disjoint sets Qh,BQh and (CQ)h. The set BQh contains all the irregular mesh
points in (, i.e. mesh points that do not have all four neighbours within the open set Q .
Qh is the set of regular mesh points inside ! and (CQ)h contains the remaining, the exte-
rior mesh points.

We then set up the matrix equation

(3:1) Au = v

that we are solving as follows. We use the same discretization formula for both A and B

on Qh v (CQ)h. For points in 3%}, a linear combination of the discrete Laplacian and inter-
polation formulas of first or second order accuracy for the boundary conditions are used. The
values of the solution at the exterior mesh points are always eliminated from the discrete
Laplacian, centered at an irregular mesh point. This guarantees that A 1is a reducible matrix

with no couplings to the exterior mesh points from the irregular mesh points. If P is a

suitably chosen permutation matrix, then

11 N
PA PT =
G TR
where A11 is the coefficient matrix for our discrete problem on Qh (V] th. It is easily

seen that the solution on Qh v BQh will not be influenced by either the solution or the

data on (CQ)h .
wie




The matrix A differs from B by only m rows where m is the cardinal number of

th. We can therefore write

‘P
A=B+UW,

where the matrices U and W have m columns. The matrix U represents an extension
operator. It maps any mesh function defined only on BQh into a function on all mesh points.
Its transpose, UT, is a trace operator mapping any mesh function defined for all mesh points
into its restriction to BQh. We easily verify that
WT = UT(A—B).

We now describe our method for solving the discrete problem (3.1). Guided by the contin-
uous analog we make the Ansatz,
(3.2) u=G_Gv +GVu.
The vector Gv satisfies BGv = v. The m-vector | is determined by solving a system of
mXm linear equations derived below. The mesh function VU should vanish on Qh' Each
column of the matrix V represents a discrete dipole of unit strength. Let such a column
corresponding to P ¢ BQh be regarded as a mesh function, denoted by VT(P). We require that
(l/ha)VT(P) u = [du/9dVv] (P) + O(h). Here h = h/cosa where @ is the angle between the normal

through the irregular mesh point P and the closest coordinate axis. In particular, if

that the western and northwestern neighbours of P in (Cd)h, then

(3.3) (viul (P) = u(P) - (1 - tan o) u(w) - (tan o)u(NW).
We now use our Ansatz and compute the residual vector,

(3.4) Au-v (B + UWT) (GF + GVU) - Fv

(V + UWTGV)u + UWTGFV.

From the properties of U and V, it follows that the residuals are zero for all x ¢ & .

h
To derive a linear system of equations for the vector U we multiply equation (3.4) by UT.
It is easy to verify that UTU = Im and UTV = Im . Here Im is the m*m identity matrix.
We thus obtain
(3.5) (Im + wTGv)u = -WTGF .

This choice of {1 make the residuals zero for all x ¢ BQh. Hence substitution of M in
equation (3.2) will provide us a solution on Qh v QQh if equation (3.5) is solvable. Note

that the residuals will in general not be equal to zero for all x ¢ (CQ)h . The matrix on

-5-




the left-hand side of Equation (3.5) is the capacitance matrix C . We shall refer to
Equation (3.5) as the capacitance riatrix equation.

In the special case when v =1U UTv, we can simply make the Ansatz u = B-lvu. It is
easily seen that the residual Aau-v will again be zero at x « Ph. The capacitance matrix
equation now becomes
(3.6) cu = Uy
If Equation (3.6) is solvable, then Au = v will also be zero on BRh. The solvability of
Equations (3.5) and (3.6) will be discussed in Section 6. F

We now describe our choices of difference equations at the irregular mesh points. We
approximate the boundary conditions by interpolation schemes of first or second order accuracy,
which we shall refer to as schemes Iz, Ib and II respectively.

We start with Scheme TI. Let P ¢ th and P* be its closest point on (. Let
W,E,N and S be the western, eastern, northern and southern neighbours of P on the mesh
respectively. We assume that the local orientation of the boundary is such that either both
W and N are in (CQ)h or only W is in (CQ)h . Assume that both W and N are in (CQ)h.
Let dl denote hl/h where h1 is the distance, along a mesh line parallel with the xl—axis,
between the mesh point P and the boundary 09{.. Hence d, ¢ (0,1]. The Dirichlet data at

1

this point on 02 is denoted by us The values of d2 and u, are similarly defined. We

then approximate e and uy by (l/2)[(1+d1)u(w) + (1-d1)u(E)] and (1/2)[1+d2)u(N) +
(l—dz)u(s)] respectively. By combining the above with the five-point formula for the Laplacian
and eliminating u(W) and u(N) between them, we obtain
(3.6) 4u(pP) - [2d1/(1+d1)]u(E) - [2 dz/(1+d2)] u(s)
2
= h"f(P) + [2/(1+d1)]uw + [2/(l+d2)]uN .
If only W is in (CQ)h, then we obtain
€3.7) 4u(pP) - [2 dl/(1+dl)]u(E) - u(N) = u(s)
2
= h £(P) + [2/(1+d1)]uw ¥
We now describe the two variants of Scheme I, namely Scheme Ia and Ib. In Scheme Ib,
if both W and N are in (CQ)h, we obtain

-y 4u(P) - u(s) - u(E) = h2£(P) + u, *+

-6-




If only W is in (C,)h, we obtain
(3.9) 2[4u(P) - u(S) - u(E) - u(N)] = 2 [hzf(P) * uw]

The scaling factor 2 1is largely artifical and is put in only for the convenience of
theoretical estimates in Sections 5 and 6. In Scheme Ia, we seek to eliminate this scaling
factor while retaining the theoretical convenience. We require that Eguation (3.8) should be
used regardless of whether both W and N are in (CQ)h or only W is in (CQ)h. The
matrices All for all the above three schemes are of positive type. Hence, the results in
[4] or [13] apply and all these schemes are convergent.

There is an important alternative to the above approach. Instead of the discrete Green's

function of the entire plane, we may use the discrete analog of the Green's function on a
sufficiently large square S with zero boundary conditions as our G in equations (3.2) and

(3.5). In this case G = B—l; A= BD 55 UWT. Here BD denotes the matrix representing the

D

discrete Laplacian hZAh on S and zero boundary values on the grid points of 3S. The

residual Au-v will again be zero on ﬂh u Bﬁh if ¢=0 & B; V is nonsingular.

Finally we come to the central guestion as to whether the capacitance matrix equation
(3.5) is closely related to the Fredholm integral equation (2.2)? Tt is known (see e.g. [16])
that the conjugate gradient method converges superlinearly‘for Fredholm integral equations of
the second kind. 1In our experiments we normally fail to observe superlinear convergence. To
understand this fully, we split up the matrices C into two parts as follows.

C = Bh + Kh “
The matrices Bk are defined by
B, (P,Q) = C(P,Q), if d(p,0) < /h
(3.10)
=i B otherwise .
They are therefore the near diagonal parts of C ; and the matrices Kh are the remaining
parts, the off diagonal parts of C .

It will be shown in Section 6 that for Schemes La and Ib, and, after a suitable scaling,

for schemes II, the matrices Kh are closely related to the compact integral operator K in

Equations (2.2) or (2.3). The matrices Bh' however, will not in general be formal approxi-
mations to the identy operator. 1In fact, the algebraic row sums of Bh need not always be

equal to one.

-




It is, however, shown in [16] that for operator equations with symmetric positive defi-
nite operators of the form B + K with B symmetric positive definite and K symmetric
compact, the conjugate gradient method will converge linearly with asymptotic rate of con-
vergence governed only by the spectral condi.ion number of B . We therefore proceed to
study the special condition numbers of Bh in Section 5 and the distribution of singular
values of Kh and C in Section 6. We shall shcw in Section 7 that the asymptotic con-
vergence of the conjugate gradient method for solving the capacitance matrix equations will
depend essentially on the spectral condition number of Bh.

We now discuss briefly two different methods of implementing our algorithm and the
operation count involved. We use the conjugate gradient method to solve

CTCu = CTb,
where b denotes the right hand side of the capacitance matrix equation. The solution u
is then computed from (3.2). 1In the first method, we generate the capacitance matrix
explicitly. Assume that the G in equations (3.2) and (3.5) is the discrete Green's func-
tion on the entire plane. Because of translational invariance it is only necessary to com-
pute G with the second parameter fixed at the origin. It is shown in section 4 that only
one call of fast Poisson solved on a sufficiently large rectangle is needed to generate G
and only two calls of a similar solver is needed to compute the final solution and the right
hand side b . The operation count of the algorithm is therefore constant N2 log N
+ 2 Com + 0(m) , where o is the number of iterations needed to achieve a certain accuracy.
If the G in equation (3.5) is B;l , it is desirable to use the second method where
the solution y 1is computed by an iterative implicit method first appearing in [15]. The
operation count for computing y is proportional to Co(m+m1)N , where m, is the number of
nonzero entries in the matrix V provided that a special fast solver is used in the process.
See section 4 of [31] for details. It will be shown in section 7 that C0 cannot exceed
constant logm if G = Bgl is used in (3.5) for all domains with sufficiently smooth bound-
aries and that C0 is uniformly bounded in some special cases if the discrete Green's func-

tion on the entire plane is used in (3.5). The total operation count of our algorithm there-

2
fore does not exceed constant N~ log N .




§4. Properties and fast generation of G , the discrete Green's function on the entire plane,

and the efficient computations of Gv, GVu and WTGV.

A discrete fundamental solution of the five-point Laplacian Ah wich respect to the

origin is a mesh function Y that satisfies

-2 g
h FE 1= 0

(4.1) Ahy(um = {
0

if IO,

where 1 has integer components ul and U

5 -
Clearly 7Y 1is unique up to an arbitrary linear function. The constants involved will be
chosen so that we have a proper discrete analog of the logarithmic potential. The resulting

discrete fundamental solution will then be our discrete Green's function G.

It is established in [27] that if g(r,s) denotes

(4.2) (2/m) ["1-cos(s\) exp(-|r| W) 1/sinhy ax
0

where

(4.3) cosA + cosh i = 2

(4.4) /X = L as i+ 0,

then the function G defined by

(4.5) G(rk,sh) = (1/4) g(r,s) + (1/2m)log h - (1/4m) (log 8 + 2Y1)

is the desired Green's function of the entire plane. Here Yl is the Euler's constant; r
and s integers and h 1is the mesh size.

It is shown in [27] that

(4.6) g(0,0) = 0, g(0,1) =1

(4.7) g(r,s) = g(s,r) = g(-s,r) = g(s,-r),

(4.8) glr,r) = (4/mM) (1 +1/3 + ... + 1/(2r-1)] ,

(4.9) glr,s) = (1/mlogls2+r?) + (1/7) (log 8 + 2y,) +o(1/r),
(4.10) g(r,s) - g(r,t) = (L/Mlog((r +s?)/(t>+r)] + ol1/r).

We have found it necessary to obtain sharper estimates for the remainder term in (4.10)

when t = s+l and a similar estimate for g(r+l,s) - g(r,s).

Theorem 4.1. Let r,s and t be nonnegative integers with r > 8; s = t-1. Then

(4.11a) G(rh,sh) - G(rh,th) = (1/4m)1ogl(s2+r2)/(t%4r2)] + R (x,8) + Ry (r,s) + R, (r,s),

where




(4.11b) Ri(r,s) = (/24m [T 0%-piPsini(s + 17200
0

= e 4 25 2,6 ~rh 3 vl
(4.11c) Rz(r'S) = -(1/2m) | [(1/30)A7+(7/96)rA”+(1/288)r J ~ e sin[(2s+1)A/2]'dA,
0 2/3
(4.11a) IRy < (0. e BETT L nenT
Proof. We have
e -
(m2)ig(xr,s)-g(r,t)] = fﬂ[cos(tX) - cos(sk)]e-""'llsinhu]-1 axr ,
0

and it is known that

rA, -1

fw[cos(tk) - cos(s\)]e AT TdA = (1/2)log[(52+r2)/(t2+r2)].
0

Since

(4.12) [7|cos (1) - cos(sh) | et < e,
™

it suffices to estimate

fﬂ[cos(sl) - c':os(t:)‘)][e_r)‘)\_1 - e-ru(sinhu)-lldl.
[o]
The integrand in the above expression will be denoted by J. Let ¢ = (1.5)r_1/3, r > 8. Me
have
€ € -r\ . -1
(4.13) [3aXx= [ [cos(sh)-cos(tA)]e  "[2 sin(A/2)]1 F(M)d) ,
C 0 0
where
(4.14) F(M) 2 2(sinC/2)13 =2 ein(/2) (atnnul ~te FWT -
By (4.3) and (4.4), we have
(4.15) sinh = 2[sin(A/2)][1+sin’ /)12 ,
(4.16) e—u = 2 - cosA -2[sin(A/2)][1 + sinz()\/z)]l/2 4

It is easily verified that for 0 < A < g,

e(k—u)

(4.17) = 1+ (1/12) (A3425) + (1/288)01° + c, i,

with Icl(k)l < 0.035, 0 <A <1l. Hence,
AT s 12y (23 + 225 + (/288628 + c,x,\)
75 2.8 3,9
Here |C2(I,A)l < (0.04)rX” + (0.01)xr"A" + (0.001)r A~ . Therefore,
FOA) = (1/12) (32-x22 = (1/8)22%) - /30002 = (1/288):208 + etz

Here [ (x| < (0.002% + (0.0510)” + (0.0100)2°2% + (0.001)r)7 .

Hence,

€
(4.18) of Jah = 27R (r,s) + R,(r,s)] + 2, (r,s)+ 2,(r,s),
where (4.19)
(4.19) lz, c,0)] < [7 e Pe. (r, 110

1 5 3

< 1047 =/ |
-10~




(4.20)

It remains to estimate

Clearly,

(4.21)

It can be

£33k Et

(4.22)

By (4.17),

so that

Hence,

and

(4.23)

] 2/1.
e

(1/6)r VIE

M3 ax

&

Izz(r,s)

.

[ gl m - A -y
P gax] < [T ™™ & o™
€ 3
shown that e-p us a decreasing function of for 0 <A<m, See e.qg.

p. 33 of

is also shown there that

=X -0.76
e

e < p A= 0.8
< o8 Y s
< e-l'07, A=l
< oh8 Xow
-y =X * *
e = e (1L+Cc MV, |c M| <o0.1, 0 <) <o0.8,
= -0.9)
e e S
fﬂ e M A < (0.32)e'_0'76r 7
0.8
-1.35r2/3 =E =
e o e

T 5 e < @asE™
E

By combining (4.12), (4.19), (4.20) and (4.22), we see that

2/3
(4.24) 2 rgteiet] £ 203 TR qony £
The theorem then follows from (4.5), (4.13), (4.18)-(4.21) and (4.23-(4.24).
Theorem 4.2. Let r,s and t be nonnegative integers with r > 8; t = r+l. Then
(4.25a) G(rh,sh) - G(th,sh) = (1/4M) logl (r2+s?)/(t%+s%)] + 5,(r,s) + 5,(r,8) +S.(r,s),
where
(4.25b) s,(re) = [Ta/2am D2een P Ze M2 (/D000 ) (a1
0
00 -X
(4.25¢) s,(e,8) = = [T azemazzonte/e6y® + 17288 r3° + 21N
0
- e_(r+1/2)l cos sA(s})
2/3
- - -1 =1.35 %
(4.254) |s,(x,8)| 1.9)r™% + (206)r”" + (0.5)c ) e *
=
e — —e— B i o W ——




Proof. We have

-+ A = =, *
2 lgte sl -uttd] = [ (o e S Yeaataitar o e,
0 0
where
J* = cc's(s)\)[e_tu(sinhu)-1 ~ e_tlk-l - e-ru(sinhu)-l + e~rxk-1]
It is known that
(4.26) [° e cos(sniar = (1/2)10gl (r24s%)/ (£248)]
0
Clearly,
(4.27) fw ]e~tA— e-rxlk‘ld & (l/ﬂ)r-le-rﬂ.
m *
It therefore suffices to estimate fﬂ J d\. Let
* * * 0
(4.28) J = J1 + J2 '
where
* - - - - -
(4.29) 3, = cos(sh) [e o e T g
* - - - -
(4.30) 3, = cos(sh) [e V-e Ata Tyl
Lot &S (1.5)% /7 By (4.16),
(1-e™™) 12 sin(0/217! = —sin(/2) + 11 + sin?O/2172 < 1.
But
a2 (L T e TRy bl(k)l3 ]
where

Ib,| < 1712, o0<Azce.

Hence, by (4.14)
€ €

(4.31) IO JI = IO cos(sk)e-(r+l/2)x F(A) + El(r,s) ' ’
where

(4.32) e, | < [y @122 pne™ ad < (s.80)r7° + 36ar7% + 107710 .
By (4.17),

(4.33) fz a, = Iz taz12) 20ty « (1/288)2° + CI(A)XG]cos(sX)e_tde,

with |C1(X)[ < 0.035. It is easily seen (see also p. 38 of [30]) that

* - - - - - -
(4.34) ot @l < £ T RIS g T R, PR
(-
The theorem easily follows from (4.19), (4.20) and (4.26~(4.34).
«12=
- I B s il T

. s e o




Theorems 4.1 and 4.2 provide accurate estimates for distant values of the undivided
differences of G . One can use these estimates as Dirichlet conditions for a fast Poisson
solver to generate all the values that are needed to set up the capacitance matrix C . One
can also use integer arithmetic as in [27] to construct a table of values of G for r,s & P
See e.g. Table II on p. 292 of {27] or Table I on p. 41 of [30]. By using the above tables

and Theorems 4.1 and 4.2, we obtain the following.

Theorem 4.3. Let r and t = s+l be positive integers. Then

(4.35) G(sh,rh) - G(th,sh) = (1/4m)log[(s2+r2)/(t2+r%)] + R(a,r)
where
" -3 -3
(4.36) |RGs,x)| < (0.34) min {s™7,x°}.
Moreover,
7 7 7
(4.37) max{ 1 max |R(s,r)|, z max |R(s,r)|, 2 max [R(s,r) |} < 0.01.
r=2 s<r s=2 r<s s=r r<s

We next investigate the monotone behavior of the undivided differences of G in certain
directions. Let
Gx(i:j) = G((i+1l)h,jh) - G(ih, jh)
Gy(i,j) = G(ih,(j+1)h) - G(ih,jh)

By the five-point formula and symmetry,

(4.38) Gxx(i~l,j) = ny(i,j—l) i0 or j¥0;

(4.39) 2Gx(0.j) = —ny(o,j-l) j=0 .

Theorem 4.4 Let r and s be nonnegative integers. Then Gx(s,r). Gy(s,r). —ny(s,r)

and ny(l,r) - ny(O,r) are always positive; and Gxx(s—l,r) is always nonnegative for
r 2 8.

Proof. Except for the result on Gxx(s-l,r), the proof for all the other results are similar. We

first estimate the values of the expression for s = 0, r > 8 using Theorem 4.1 or 4.2. By
symmetry, the results hold for s > 8, r = 0 as well. We then verify with the aid of Table II
on p. 292 of [27] that the same results hold for s =0, r <8 and s > 8, r = 0. Since the
five point formula is satisfied at all points rh and sh with r>0 and s > 0, an application
of discrete maximum principle immediately yields the desired result.

The proof for Gxx(s-l,r) is as follows. By symmetry and (4.38), we note that

G __(s,r) E 0 for s =7r
XX
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By symmetry,
G __(s-1,r) = 2G_(0,r) for s =0,
XX x
An application of the discrete ma¥imum principle therefore completes the proof of the theorem.
This concludes our discuvssion for undivided differences of G . We now proceed to
obtain better estimates for the remainder terms in (4.8) and (4.9).
The following theorem is an immediate consequence of (4.8) and some well known result of

asymptotic series. See also p. 325 of [5].

Theorem 4.5 Let r be any positive integer. Then

(4.40) G(rh,rh) = (1/4mlog(2r’h?) + (1/48mr 2 + R’ ,
where
(4.41) [rel < (7/1920m) x4,

Theorem 4.6 Let r >s; r and s are nonnegative integers. Then

(4.42) G(rh,sh) = (1/4mlogl(sZ+r®)n?] - (/24m (24! + a/3mr2s?(c24s2) 73 + L(r,s)
where
2/3

(4.43) ©|ute,e)] < @.sumret 4 asa/me® + (/miog £ 7103 -
Proof. As in the proof of Theorem 4.1, we have

IE Jdx = IEICOS(SK) - cos(tM1e T 2 sin(l/2)1 " F (M) al.

0_1/3 (0]
Here € = (1.5)r , t may be any nonnegative integer. It can be shown that

1

(2 sin(/2)177F ) = (1/12) (A-r2?) - (11/144)2? - (4371440023 —(1/288)r2)° + L. (r,)).
1

Here ]Ll(r,k)l < 0.012)A% + (0.06)rA® + (0.012)z%A7 + (0.0012):%28 . But

[7e™* XPosbxrdx = r1 [(a-ib)™! + (a+ib) ™1y /2(a2pH) "L |
Hence, ¢
(4.44) [ e oos(sM) (1/12) A-r2?) = -/12) (246217 + (27316262 (r%4s2) 2 = (1720172,
when r =5s . g
We also have
(4.45) a2 " mnt + @3100° + @2 + 18l 0 e < s+ 308070,

=3

Since |sinhu|-1 <A for A < 1, we have

| [Faax] < IF 3l 5 " Hhan.

» 0 <X < €. Hence,
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n - 2/3 2/3 n
(4.46) " a3 ar] < 2¢ L. 5¢ o~ 13527 | f

2/3 2/3
@/en v 18T el

By combining (4.40), (4.41), (4.44)-(4.46) and using the technique in the proof of Theorem 4.1 to
estimate the remaining remainder terms, we see that Theorem 4.6 holds.

Theorem 4.6 also provides a means of generating G(rh,sh) by means of a fast Poisson
solver on a rectangle using the first three terms on the right hand side of Equation (4.42) as

approximations for distant values of the Dirichlet data.

We now describe an efficient method developed in [24] of computing Gv for any vector

v defined on a square mesh S > @ , with boundary mesh 3S

h h Let US and U, denote the

h* 39S

extension operators from Sh and Bsh respectively to all mesh points that are defined the

h b ;
same way as U . We are actually computing Us G Us v. We first solve the system of equations
T
USBUS¢ =v on S
$=0 on s

for the potential ¢ . We then extend ¢ by zero to all mesh points. We represent ¢ as

(4.47) = GUSV + GU, P

3s
where [ is an unknown vector defined on the mesh points on 9S to be determined. It is easy
to see that
o= UzBb .

The vector U: G UBSO can easily be computed by one fast Poisson solver on S with UgsGUBSO
as the Dirichlet data on dS. Because of the sparsity of the vector UBS , the Dirichlet data
can be computed at a cost of constant N2. Ug G Usv is then computed from (4.47).

We now describe a method of computing all three of the vectors Gv, Gvpy and WTGV using
only two calls of fast Poisson solvers. This may appear to be impossible since WTGv, the
right hand side of the capacitance matrix equation, must be determined first and the computation
of Gv alone requires two calls of fast Poisson solvers. We can, however, first compute and
store the vectors ¢ and p in equation (4.47). Clearly,
WTGV = WT¢ — WTGUasp.
But we need only to compute GUasO at those mesh points that WTGv is defined. Hence, the
computation of WTGUBSO requires only constant n2 operations. On the other hand, Guasp and

GUY can be computed simultaneously with one call of fast Poisson solver with U§5G(UBSD+ Uu) as

=15~




the Dirichlet data on S . Hence our algorithm of computing all three of the vectors wTGv,
GUu and Gv requires only calls of fast Poisson solvers plus constant times n2 operations.

In the methods described so far, a fast solver on 2N * 2N mesh points is needed to
generate the discrete Green's function or its undivided differences on a N * N mesh Sh -
An alternative method is to first generate the undivided differences of G on a N/2 x N/2
mesh using a fast solver on N x N mesh points. The values on the remaining mesh points of
Sh are computed by using (4.11) and (4.25). An accuracy of eight decimal digits is guaranteed
by Theorems 4.1 and 4.2 if N > 60. A somewhat less accurate but easier to program method is
to generate the values of G on a N/2 x N/2 mesh and compute the values on the rest of Sh
by using (4.42) and (4.43). An accuracy of five decimal digits is guaranteed by Theorem 4.6
if N > 60.

We shall assume in the next two sections that the G used in the capacitance matrix
equation is the discrete Green's function on the entire plane. The main results in sections

5 and 6, however, will also hold if G = B;l is used in equations (3.2) and (3.5). See

section 5 of [31] for a discussion in this respect.
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5. Spectral bounds of Bh .

We shall show in this section that Bh is uniformly well conditioned in the spectral

norm as h » 0. The following well known lemma is crucial to the proof of our main result.

Lemma 5.1. Let the symmetric part of a matrix A satisfy
(A+AT)/2 > 4T, &> 0.
Then
a’a > 81,
Theorem 5.1. (0.25) ¥ < B: Bh < (7.29)T for scheme I.a
(0.25) I < B: Bh < (E3L7)E for scheme I.b
(0.0 T < B B, < (5.5N1 for scheme IT

for all sufficiently small h > O.

Proof. We shall first prove that the following holds for scheme Ib.

T
(5.1) 0 Bh gl Bh 2
Let B 2Bk BT. We shall show that
s h h
(5.2) min {B_(P,P) - ) |s (e, @[} > 1
Peaﬂh QsBQh,Q#P

so that (5.1) holds because of a well known Gerschgorin theorem. The inequality

iy

<
I < B B

will then follow from Lemma 5.1.
Let P ¢ BQh . Assume that the local orientation of the boundary near P is such that
for any point P' ¢ BQh in that neighbourhood, either W' and N', the western and northern

neighbours of P', are both in (CQ)h or W' alone is in (CQ)h. Let « be the angle

PI
< m/4 that the normal through P' makes with the Xy axis in the east~west direction. By (3.5)

and (3.9), we have, for P # Q ,

(5.3) Bh(P.Q) = 2[G(WP;WQ) - G(WP;Q)] + 2 tanU.P[G(WP:NWQ) - G(WP;WQ)]

if P has only one neighbour in (CQ)h. Here YP denotes the immediate neighbour on the mesh
for any point P in the Y direction. Similar expressions to (5.3) are easily obtained when
NP is also in (CSZ)}1 or when P =0Q . If P = (jh,kh), Q = (mh,nh), then because of transla-

tional invariance, G(P;Q) = G([j—mlh,[k-n[h) .

Assume that 0 < o, < m/4 and that (anh)loc, which denotes a subset of BQh that

contains a vh neighbourhood of P , can be partitioned into blocks as follows. Let
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]

{(O,h),...,(O,Mlh)}

—
(]

k {(kh,Mkh"h),---.(kh,Mk+1h)}. k=1,...0K ,

1= {Gkho-m_ 0 yhoeen, (ckhy =M hen) ), ko= 1,.. . K.
Then,
5
= V] -
L L% Py =K, L R
Note that Mk - Mk-l gives the number of points in Ik—l' k = l,...,K1 while M_k - M—(k-l) j
gives the number of points in I K’ k = 1,...,K2; MO = 0. i

Let Pj denote the point with xz-coordinate jh. From (5.3) and Theorem 4.3, it is

easily verified that Z |BS(P,Q)| will remain essentially unchanged for sufficiently

QOFP
smooth 32 if tan aQ is replaced throughout by tanaP. Let a = tanap. Let P = Pi and
G(i,3) = G(ih,jh). We shall assume that P # PM unless otherwise stated. We easily verify
1
that for P, ¢ I,
3 0
(5.4) BS(P,P) = 3+a,
(5.5 B_(p,Py) = -4(1+a) 6 0, [i-30), 3 EE, 3 EM
(5.6) BS(P,PMl) = =2 (1+a) Gx(O,Ml—l) + (1-a) ny(O,Ml-l).
By (4.39), we see that for Pj € I0 c
Sal B (P,P,) = -2(1+a)[2 G (0,0) - G (O,M -i) - G (0,i~1)
(5.7) L B (PP (1+a) (2 6 (0, , (0eM=1) - G (0,i-1))

i#j
¥ M =i = -t
+ 2(1+a) G_(O, 1 i) + (1-a) G (O,M1 Y o

For Pj € Ik' k = l,...,Kl, we have

(5.8) BS(P.Pj) = 2(1+a) ny(k,j-i-l), IEM

(5.9) BS(P,Pj) = (1+a) ny(k,j—i-l) + (1-a) ny(k,j—i), e Rt T

5.10 B (P,P,) = - 1y = ) A | . -

( ) 5 {I S(P P;) 2(1+a)[Gy(k1Mk i) Gy(k Mk+1 in (1+a)ny(k Mog-i 1)
3K

+ (1-a) ny(k'Mk+l_i) .

By Theorem 4.4, we see that each BS(P,Pj), J#1i, J <1, is negative. Hence

1
(5.11) B_(P,P = 2(1+a) [G oM =i ' L
kZ1 P; 5 FuiriRy (1+a) [G (1,M)-i) + kzl Gy (KM 4 =1)]
ik K
y El
=(1=&) G _(k, =1) + (1+&) G (k, =i=1)
k=1 Y et k=1 ¥¥ -1

< 2(1+ -i
(1+a) Gy(l,M1 i)

Similarly,

1
(5.12) ) ] lss(p,pj)l < 2(1+a) 6 (1,i-1) + (1-a) G, (0,i-1).

k=1 P.el
) -k
-18-




By combining (5.7), (5.11) and (5.12), we see that

(5.13) Y |B (p,P.)| < 4(1+a)G_(0,0) + (1-a) G_(0,i-1) < (5+3a G_(0,0) = 5/4 + 3/4a .
L 3 ¥ Yy Y
i#j

Here we have used (4.5), (4.6) and Theorem 4.4. Hence, by (5.4) and (5.13), we see that

(5.2) holds for P ¢ I0 P # PM .

1
The proof for P = PM is quite similar and is sketched as follows.
1
(5.14) B _(P,P) = 2+2(1-a) G__(0,0) .
S Xy
(5.15) I [s @l = (14a) (6 (0,0) - 6 (0.M-1)] + (1-2) [G,(0,1) - G, (0,M)];
P.el_,3#i
3 ©
(5.16) ¥ ) IBS(P,Pj)| = (1-a) (G (0,0) + ] {6 (k-1,M . -M) - Gy (KeMy M) 1]
k=1 P,el k=1
e
+ (1+ 1,0) + . = - M :
(1+a) (6 (1,0) kZI{ny(k Mgy ™M) * G UM oM nh
Lp g P, = r i -
(5.17) kzl L. [s_(» pJ)l (1+a) [G, (1,M)) + kzl{cyx(k'ulmk) + Gy (kM 44y -1) }
iT =k
+ (1-a) [G (1,M)) + kzl{cxx(k,ml+m_k) - G kL Mmoo -1
By (4.38) and Theorem 4.4, we see that
(5.18) Yy ) IB (p,P.)] < (1-a) 6.(0,0) + (1+a) G (1,0).
& s 3 = x Y
k=1 P, el
) s
Similarly, by using the identity (5.20), we have
(5.19) kzl g Y |ss(p,pj)| < (#a)G (1,M) + (1-a) (G (1,M)) - G (0,M-1)] .
= jEI-k
(5.20) Gy (K Mp#M =) = G O+l M 4M, =1) + G (M 4M,=1) = G (M 44 )
Hence,
(5.21) k£1 |BS(P,Pj)| £ 26,(0,0) + 26, (0,1) + aG (1,M)) .
By combining (5.14) and (5.21), we have
(5.22) B (P,P) - ) Ias(p,pj)l > 2+ 2(1-a)cxy(o,o) - 26,(0,0) - 2G_(0,1) - aGy(l,Ml).

i#)
Clearly, the right hand side of (5.22) attains its maximum at a = 0. Hence, (5.2) holds for

P= PM . The proof for other choices of P is similar and will not be repeated. We note
1

that we have assumed that BS(P,Q) # 0 for any Q e(aﬂh>1°c. This assumption will not
affect our estimate (5.2) because each BS(P,Q) is either zero or negative for P # Q.
Finally we remark that the schemes Ia and Ib described in this work are essentially

dual to the schemes I.N.a and I.N.b described in (31] in the following sense. If we

maintain that a = tanap does not change its value for the entire row or column of Bh
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corresponding to P, then Bh(P,Q) is the same for both schemes Ia and I.N.a. or for both

schemes Ib and I.N.b. Therefore we refer the reader to [31] for the proof of Theorem 5.1

for scheme I.a. We now proceed to prove the following inequality for scheme II.

(5.23) min {B_(P,P) - } [B_(P,Q)|} > o0.41I
¥ o orp S

Let P € th. We assume the same local configuration of irregular mesh points near P

as before. By (3.5) and (3.7), we have for d_ > 1, P # Q,

2
(5.24) Bh(P,Q) = -Gx(wP;WQ) - e Gx(EP;WQ) + a[Gy(WP;WQ) + e Gy(EP;WQ)]
where
(5.2%) e = (l-dl)/(1+d1), a = tana, .

Here Gx(':‘) and Gy(';') denote the forward undivided differences in the X and x, direc-
tion with respect to the second variable of any mesh function G respectively. A similar expres-

wion involving e, which is similarly defined or a constant one should be added respectively to

the right hand side if d2 <1 orEf PEg, Lat elj and ezj denote the correspondina e,
and e, respectively.
Let P = P,. We first estimate ) {|s_(p,p)| +|Br(p,p.)|}.
i i-3]>3 h 3j h j

*
Let Bh(P,Q) be defined by Equation (5.24) with G replaced by its continuous analog which we

* *
shall denote by G . BT (P,Q) 1is similarly defined. By (5.24) and (5.25), we have for d, > 1

h 2
and P # Q
* * * * * * *
(5.26) Bh(P,Q) = [2/(1+d1)][-G (W ;Q) + (1-a)G (W ;wQ) +aG (W ;NWQ)] + RWE
* * - * * "
= [2/l+d1)][G (W ;W') - G (W ;Q)] Rge * RQ '
where
el k Kk
(5.27) Rep = [3/(1+d)1-1 kzz (/) [(d)-1)" + (@ +1)7)
k * * * *
< (3/03x%)) {~6 (*;Q) + (1-a)G (-;wQ) + aG (-;NwQ)}l(w )1}
+ nth order remainder term.
s 2 2 XK 2. ¥ ¥
(5.28) Ry = [h"a(l-s)/(1+d ) 1{ al(3/3x,)" G (W ;=) 1 (NW ) + (1-a) [(3/3x,)°G (W ;)] (NW )]}.
p ! 2 ] 2 1
Here W* is the point were the Dirichlet data Uw is given. W' is a point on the mesh line
connecting wQ and NwQ and at a distance ah from WQ. NHO and Nwl are respectively points
that can be anywhere on the mesh lines between W' and wQ and between W' and Nwo. We
shall assume that d20' the analoque of d2 for the point O , is also greater than 1 . In

that case, we have a similar expression for B:*(P,Q) as that in (5.26).
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* *
We now proceed to estimate B: (P,Q) + Bh(P,Q) . It is easily verified that if
P,0 are two points on 90 with d(P,Q) fAhy, N <yY<1 and ta is the tangent at Q to 32,
then
a(p,ta) < (K +o()nY.
= max
Here Kmax is the maximum absolute value of the curvatures of 9. Hence, without loss of
* *
generality, we may assume that W lies on the tangent to 92 through Q , the point where the
*
normal through Q intersects with 92 and vice versa. Let r denote d(W ,Q) and r' denote
* *
d(w ,W'). It is easily seen that r' > r if aQ ,9) i.h(1+az)/2. We separate our discussion
*
into four cases. The first case is when r' > r and d4d(P,P ) < h(1+a2)/2. The maximum of
3 " . i - 2 2 2.2
log (r'/r) then occurs when Q coincides with Q . 1In this case, r'" - r = (1+a’)h”. Hence,

if Pzpi,QEPj,i;éj,then

*  x * =3
0<G (W; ;W) -G (W;Q) < (1/am [3-i[° .

By (5.28),

—(1/8n)|i-j|-2§Rng ; BE e

-(/8m |i-3-1]7% < ®y < ta-ah)Vaaram a4y 2 [3-im17 a i 5
Similarly, by (5.27),

s a4

a+a) R < @/m |3-1]77 .

Hence, for |j-il > 3,
* . 1-2 o =3 Y Eh

(5.29) (l+dl)|Bh(P,Q)| < (/2m|5-i]7% + @assm [3-i-1177 4 (2/m [5-1] 77, if 1> 3;

(zz2m |3-1]72 + @m|3-1174,  if 1.

| A

o 2 3 T 3 i z
Since d(P,P ) < h(l1+:7)/2, the estimate for Bh (P,Q) is the same as that given in

(5.29). Hence,
(5.30) IB:*(P,Q)I + |B;(P,Q)| < @mli-i|™2 + @m(5-i]7 + assm|g-ia| T

The second case is when r < r' and d(P,P*) < h(1+a2)/2. Let de denote d(Qt,Q)/h.
Then de o 1/2. Hence by (5.29),

sy 00| < azam|s-i] 7 2715m |3-1-1["2 + @/am {3117,  if 3>

< amls-il7? s aam |-l e 1>
*
On the other hand, the maximum of log r/r' occurs when Q coincides with wz. In this
2
case, r —r'2 = (1-a2)h2. Hence,

* % * % (-, 2 -3
G (W, W') =G (W;0) < (1/4m) [(1-a”)/(1+a))|3-4| 7%, 4f 3 5 i ;

IA

| A

(1/am) ((1-a%)/(1ea®y 1| 3-1-a] 2, if i 3§,
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(5.31) ,B;(P,O)l < taszm + a/8mil3-il 72+ 2/m|4-1]7 if § >4 ;
< a2 113-i17% + azem|3-i-1]7% + @m3-1]7% s 1> 4
Therefore,
T* * -2 -4
(5.32) I, (e, | + |B (P, 0] < [(1/3m + (1/2m) + (1/8m]]3-1]7° + (4/3m1]5-i]

+ (2715m |§-i-1] 73, if G
< rasem o+ az3mili-il 2+ azsm|i-i-1] 72
+ Wa/3m + (2/m1]5-1]74, FEIR (-0
The third case is when « < r' and d(P,P) > h(l+a’)/2. The estimate for IB;(P,Q)I +
+|B:*(P,Q)| is the same as that for the second case.
The fourth case is when r > r' and d(P,P*) z_h(1+a2)/2. Both d1 and de are not

less than 1/2. Therefore by (5.31) and the above observation,

(5.33) |BT

* * - -2
h B+ (B | < @M ]3-1]77 + aziem |5-i]

+ @aazm il + (s/an)lj-i|'4 z
By comparing (5.30), (5.32) and (5.33), we see that

* - — -
max lB: (®,9] + |B;(P,Ql < amii]™ + @m|i-i|™ + assm|s-1-1]"> if 3514

a/m|3-il7% + asem|3-i]72 + @ssm|4-i-1]"2 + @/m |5-1]72

1A

if 1> .
i >
Hence, if d2. dZQ 1, then
* *
¥ IB: e, + |8 (2| < a/m ] G2/x? + 8k + 2/5%° + 1/8K°)
l3-i]>3 3 : k=3
€ o.ae
Similarly, it can be shown that if both d2 and sz are not greater than 1, then
* *
(5.34) ) |B: (p,p,)| + !Bh(P,P.)I < 0.677.
l3-i>3 " g
By Theorems 4.1-4.3 and Table I on n. 41 of [30],
* T y
) {|s_(p,p,) - B (p,P,)| + |B (P,P.)|} < 0.04 .
Fr | R S iy
Hence
(5.35) I {ls @,e] + |8 (e,2 )|} <0.717 .
[3-1]23 5 ’
It remains to estimate BS(P,P) - ElBS(P,Pj)l, |i-j| <2, 1i#3j . Without loss of generality,

we may assume that both d1 and d2 are less than 1. We shall assume that P = Pi = PM with
1

Ml > 3 and My > 5. The case when i # M can be treated in a similar manner. We have

1
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(5.36) BS(P,P) =2 + 2(1-a) ny(0,0) + go(a) ’

where
go(a) = ellGx(l,O) + Gy(2,0)] + 2 ezlGx(O,l) + a Gy(l,l)l.
For any Pj € IO' j # Ml' we have
BstP,Pj) = gl(a:J) + gz(a,J) ’
where
l' = G l.—' + I.-'- o i~3 = r". 3
ql(a j) xy(O i-j) a ny(O i-j-1) a Gy(l,l j) Gx(o i-j)
qz(a,]) = el[Gx(l,L-]) - a Gy(2,1-3—1)] + eij[Gx(l,l-j) + a Gy(2,1—])l
+ ez[Gx(O,l-]—l) - a Gy(1,1-3-2)]
For any Pj € Il' we have
BS(P'Pj) - 93(3'3) ok g4(alj)l
where
gB(a,J) = —Gx(O,)—l—l) + a ny(l,]-l-l) + a Gy(O,J-l-l)
: = A = oy L o
g4(a.J) el[Gx(O,] i) + a Gy(l,) i)] + e2[ Gx(0,3-i+1) a Gy(O,J i+l)]

+ eij[Gx(2,J-1) - a Gy(3,3~1-1)].

By Theorem 4.4, gl(a,j) is negative. It is easily verified that gz(a,j) is nonnega-
tive for 0 < i-j < 2; g3(a,j) is negative for a < 1/2; and g4(a,j) is positive. Moreover,
for a < 1/2,

2 2
(5.37) L log@3 +a,@il+ ] log@i +g,@9l
3 :

j=1 j-i=1

2 2
< ggla) + ) lgl(a,j)l + ) 193(a,j)l.

i-j=1 j-i=1
Hence, for a < 1/3, Ml > 3, M2 > 5, we have from (5.37) that the following holds.
(5.38) B (P,P) - E{IBS(p,Pj)l it [ el <o,
2 2
> 242(1-a)G, (0,0) + L9 (ad) + ' DCNCTR)
i-j=1 j=i=1
> 2+2(1-a)G_ (0,0) - G_(0,0) - 36_(0,1) - G_(0,2) + G _(0,3)
— Xy X x x b
ol s

By considering all possible configurations of Pj' i-j <2, a2 1/3, it can be shown
that the constant 1.17 is always majorized by the left hand side of (5.38). It is easy to see

that (5.38) also holds when Pi # PM . Hence by (5.35), we see that (5.23) holds.
1
This established the lower spectral bounds of Bh for all schemes. To complete the
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proof of the theorem, we note that the spectral norm of B:Bh is majorized by (1/2)(,b:”xi +

||BhHa))2. It therefore suffices to prove ti : following two inequalities

(5.39) Il B:Hw + e,

iA

T4 if scheme I.b is used

T : 4
(5.40) I Bh”m + H Bh“oo 4.72 if scheme II is used.

I A

We first prove that (5.39) holds. Without loss of generality we may assume that
P e 8§% has only one western neighbour W in (CQ)h. Let P = (0,0) and Pj = (x,y), be in
9, . Then x =ay +b, [b] < (1+o(1))h if d(p,p,) < /h. Aand
* 2,02 2 2 2. 2
Bh(P,Pj) = =(1/2m) log[(x+h) “+y"] + (a/2M)loglx "+ (y+h)"] + [(1l-a)/2T)log(x +y"~)

(1/2m) [2h(x-ay) + (a-1)h’]/c> + R,

where r = d(p,p) and [R| < (1/2m) [(2x+h) 2 + (2y+h)21n/2r%. 1t is easily verified that

*
(5.41) L I eegl 2 128 if |yl > an
PHP . .
j
By Theorems 4.1-4.3 and the Table I on p. 41 of [30],
(5.42) B, (p,P) = 2 - (1/2) (1-a) ;
(5.43) ) lBh(p,p.)l < 0.28 + 0.55a/2 ;
|y|<2n 4
2. b | <o
(5.44) Bh(P,Pj) - Bh(P,Pj) .06 .
ly|>2n

By (5.41)-(5.44),

) |Bh(P,Pj)| < 3.7.

It is easily seen that the above inequality also holds when Bh is replaced by B:. We have
therefore completed the proof of (5.39) .
Let P = Pi’ By (5.36),
¢ < - v
(5.45) [ (e,2)| < 24201 a)G, (0,0) + g (a)
By (5.37) and (5.45),
T
. rEL) | ¥ " < '
(5.46) o In e p])l IBh(P.PJH 2+2g(a) + 2G_(0,0) + 6G,(0,1)

|i-3]<2
< 4.

By (5.35) and (5.46), we see that (5.40) holds.

-24-~




(5.36) BS(P,P) = 2 + 2(1-a) ny(o,o) + qo(a) i

where

qO(a) = 2 el[Gx(l.O) + Gy(2,0)] +* 2 eZIGX(O,l) + a Gy(l.l)].

For any Pj Cal j# Ml' we have

o’

BS(P,Pj) = gl(a.j) +9,(@,3) .

where
l- ; G Oll_. + G Ol'-.— = l.-. - I.-‘ ’
ql(a j) xy( i-j) a yy< i-j-1) a Gy(l i-j) Gx(O i-j)
9,(@,3) = e 6 (1,i-j) - a Gy(2,1-3-1)] + eij[Gx(l,i-J) + a Gy(Z,i-j)l
+ eZ[Gx(O,l—j-l) - a Gy(1,1-3-2)]
For any Pj € Il' we have
BS(P,Pj) = 93(a,]) + g4(a,]) '

where

ga(a,J) s ~Gx(0,j—1-1) + a ny(l,]-l—l) + a Gy(O,]—l-l)

g4(a,3) = ellGx(O,]—l) + a Gy(l,]—l)] + e2[—Gx(0,J-1+1) + a Gy(0,3-1+1)]

+ eij[Gx(Z,)-l) - a Gy(3,3—1-l)].
By Theorem 4.4, gl(a,j) is negative. It is easily verified that gz(a,j) is nonnega-
tive for 0 < i-j < 2; 93(a,j) is negative for a < 1/2; and g4(a,j) is positive. Moreover,

for a <172,

2 2
(5.37) L loytai +g,@il + 1 loj@i) + g0
i=-j=1 j=-i=1
2 2
< gpta + Jlg @il + 1 leg@inl.
i-j=1 j-i=1
Hence, for a < 1/3, M1 23, M2 > 5, we have from (5.37) that the following holds.
(5.38) B_(P,P) - {Has(p,pj)l . L3, li-3] < 2}
2 2
> 242(1-a)G, (0,0) + I ogyad + 1 gjad)
i-j=1 j=i=1

|v

2+2(1-a)G__(0,0) - G_(0,0) - 3G_(0,1) - G_(0,2) + G (0,3)
xy X X x x
A ) i
By considering all possible confiqurations of Pj, i-j <2, a >1/3, it can be shown
that the constant 1.17 is always majorized by the left hand side of (5.38). It is easy to see
that (5.38) also holds when Pi 7 PM . Hence by (5.35), we see that (5.23) holds.

1

This established the lower spectral bounds of Bh for all schemes. To complete the
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6. Singular values of Kh and C .

We shall show that all except a few singular values of C 1lie in the interval

[dl - €, d2 + €], € >0, where d and d are the spectral bounds of B This is accomplished

1 2 h”
by first proving that the singular values of Kh cluster around that of a compact operator K .
Our main result then follows as an immediate consequence of a well known result in matrix theory
which will be stated below as Lemma 6.8. We first need some definitions from modern analysis.
Let X denote a Banach space throughout this section.
Definition. A subset S C X is sequentially compact if any sequence in S contains a convergent
subsequence with limit in X .
Definition. A family of operators Kn on X is collectively compact if the set {Kmf:Hf||< 1,
£ex, m=1,2,.-.;F s sequentially compact in X .

We shall first assume that either scheme I.a or scheme I.b is used. We start by con-
structing a family of operators {Km} from '{Kh} in the same way that is done in Section 5 of

[32]. For completeness, we briefly sketch this construction in the following. Define

Ko Cio,X] + clo.1) by

m
6.1 K £} = k(£ )E(E), € 0,11 £ e clo,1],
(6.1) (K] £(€) jzl(tj)(J) 5 € [0, e C[0,1]
where
(6.2) k(t,tj) = Kh(Pi,Pj) + [(t-ti)/(ti-l_ti)J[Kh(Pi-l'Pj) = Kh(Pi,Pjn Pt SESE

c[0,1] is the Banach space of continuous functions on [0,1]. The ti' i=13,....n
are defined as follows. Let ¢,V be a smooth parametrization of 09Q. Then (¢(ti).W(ti)) is the

closest point on 90 to Pi € 92  which is on the normal through Pi' When t is very close to

h
0 or 1, the k(t,tj) in (6.2) should be adjusted slightly. See [32] for the details. We can

T =
construct by the same procedure a family of operators {KA} from {Kh k. et Ks = KAKm %

T T 3 s 2
Lemma 6.1. The nonzero eigenvalues of Kh' Kh+Kh and Khxh coincides with that of Km,
K +4K' and K respectively.
m m s

Proof: See e.g. Lemma 5.2 in [32].

B8

* *
Lemma 6.2. Let P and Q be two points in th with d(P,Q) =h", B <1/2. Let P and Q

the closest points on 92 to P and Q respectively. Then

* * * 2-28
Kh(P,Q) = 2[93G /an‘](P ;Q )hsecaQ + O(h ) .
Proof : Essentially the same as that of Lemma 5.4 in [31].
«25=
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Lemma 6.3. The families of operators me},{KA} and {KS} are collectively compact on C[0,1].
Proof: Essentially the same as that cf Lemma 5.5 in [32].

Lemma 6.4. Kmf > K, Kéf ol KTf anad st -+ KTKf for each f ¢ C{0,1] where K is the compact
integral operator defined by

*
(Kf) () = 2 3G /3v_]1(P;Q)f d
% Jét /3V,] (BiQ) £ ds

where P = (¢(tp),W(tP)-
Proof: Essentially the same as that of Lemma 5.6 in [32] .

In order for the above theorems to apply in the case when scheme II is used, we scale
the matrix Kh in that case as follows. The rows of Kh that correspond to irregular mesh
points that have one or two neighbours in (CTZ)h are multiplied with (1+d1) or

(1+d1)(1+d2)(1+d +dz)_1 respectively. It is easily verified that Lemmas 6.3 and 6.4 hold for

1
scheme II if Km is constructed from the scaled Kh. It will be shown after theorem 6.1 that
such a scaling is not e-sential and our main results will hold even without it.

Lemma 6.5. Let {Kn} be collectively compact on X ; an + Kf for each f € X. Given € > O,
let ui, wifh algebraic multiplicities m . i=1,...,N be the eigenvalues of K with absolute
values greater than or equal to € > 0. Then there exist positive numbers N* and c*< €

such that for all n > N* each s* neighbourhood of My contains exactly m, eigenvalues of
Kn while all the other eigenvalues of Kn lie in an e-neighbourhood of zero.

Proof: This is an immediate consequence of Theorem 4.8 on p. 65 of [l1]. See also Chapter 4 of
[30]. By combining Lemmas 6.1, 6.3, 6.4 and 6.5, we easily have the following.

Theorem 6.1 Given € > 0, there exists a positive integer N such that for all h > 0, all

except N singular values of Kh lie in [0,€].

Lemma 6.6. Let C = AB, where A, B and C are arbitrary matrices with singular values

> > > > > S s > > sy > j -
al 20,2 .20 > 0, Bl _.62 > —»Bm >0 and Vg 2 Vg 2eenZ XL 2 0 respectively, then
e b " . :
Yi+j+1 —-ai+18j+1 ’ i,j positive integers
Proof : See e.g. Exercise 28 on p. 89 of [23] . An immediate consequence of Lemma 6.6 is that

Theorem 6.1 holds in the case when scheme II is used even if the matrices C or Kh are not
scaled by the scaling described just before Lemma 6.5.

Lemma 6.7. If D = A+B, where A and B are as in Lemma 6.6, and 61 oy P e Cm > 0 are

2
the singular values of D , then
Gi+j+1 foat Bj+1 ’ i,j positive integers.

«26=
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Proof : See e.g. Exercise 30 on p. 89 of [23].

Theorem 6.2 Let d; and d2 be the spectral bounds of B Then given € > 0, there exists

h*

a positive integer N independent of h such that all except N singular values of C 1lie in

[dl-g,d2+g].
Proof: An immediate consequence of Lemma 6.7 and Theorem 6.1. See also Theorem 5.3 in [32]. 1In
the following, || || shall denote either the spectral norm of a matrix or the Euclidean normof a vector.

*
Lemma 6.8 Let U be the extension operator from Qh ] th ot all mesh points that is defined

*
the same way as U . Suppose that U : G VU # 0 for any nonzero m-vector U defined on BQh.

*
Then C is nonsingular. Moreover, if || U G wul| 2 Cl“ UH /” A “ for any m-vector U
11
-1
then || c™7| = K(All)/Cl, where « (All) is the spectral condition number of A,, with respect to
the norm H H
T : T 3 ’ >
Proof: Let Au=v =UU v with Uv in the range of C be the equation we are solving.

From Section 3, we see that u = GVU is a solution of Au = v if U satisfies Equation (3.6).

Suppose C 1is singular so that there exist two distince solutions U and |

1

* *
Let uo = ul-uz . Then AGvu0 = 0. Because of the reducible structure of A , Allu chuo = 0.

This contradicts the assumptions that A

2

*
11 is nonsingular and U TGV‘u0 # 0. Moreover, if

*
Il o™ ewull >

e llull 71l ap,ll . tnen
~1 T Rt
a0 o™l > o Towll > cllull /Il a,ll -
The lemma easily follows.
Definition. A scheme of interpolating boundary conditions is said to be admissible if its cor-

responding coefficient matrix A of the discrete problem is nonsingular and K(All) 2

113
constant h-z.

* * s 2
Lemma 6.9 Let C and A denote respectively the capacitance matrix and the coefficient
matrix of the discrete problem for a certain scheme of interpolating boundary conditions. Suppose
* * k 2
that both C and A are nonsingular. Then C is nonsingular for any admissible scheme of
= *_1 *
interpolating boundary conditions. Moreover, if H c ” = c2 and ]lA ” 5 c3H All“ N

-1
then |l c || Se,ekA ).

=37

of Equation (3.6).

oy



* *
Proof: 'le first ciaim that if both C and A are nonsingular, then there exists no U # 0

* *

such that U TGVu = 0 . Suppose this is not so, then there exists a p # 0 such that
* * * Tt L T* / * y . t'rt
U G =0. Let v =UUV where Cuyu =Uwv . Since C is nonsingular, U v # 0. But

*T* * * *QT *

Uv=UTAGV1J=AU Gvu =0 .

*-1
This proves our claim. By Lemma 6.8, C is nonsingular. Suppose now that H C ][ < c2 and
* " T

fa’fl < c3” Allll' Let Au = v = UU v. Clearly,

ol < ™Mol < ™A™l I o™ owul]
Hence,
*T
I o"Tewull > llull 70,0l ay I
The lemma easily follows from Lemma 6.8.
Definition ¢ is said to be in & (F) if the associated integral operator K defined by
Equations (2.2)-(2.3) is such that K + KT * =BT.
Lemma 6.10. All ellipses with thickness b/a > 1/3 are in J(l1). Here a and b are re-
spectively the major and minor axes of the ellipses.
Proof: An immediate consequence of (2.5).
Theorem 6.3 Let G = Bgl be the discrete Green's function used in equations (3.2) and (3.5).
Then the capacitance matrix C is nonsingular and || C-lﬂ < constant h™? for some positive
integer g independent of h .
Proof: It suffices to find a pair <1C*,A*3> that satisfies the hypothesis of lemma 6.9. Assume

that the difference equations are already preordered in such a way so that

I - S
ik B S P .
e Baz  Baa

where the first, second and last rows of B in block form correspond to the coefficient matrices
of the difference equations on ah,agh and (Cﬂ)h respectively.

Suppose that in forming A we use a zero order interpolation of Dirichlet data on 3Q

&t 3 uh to obtain the equations on ag’zh. Partition V,A and G in the same way as B. We obtain
9 o A -
(6.3) v = v2 and A= 0 I 0
V3 0 B32 833 .

s0 that the capacitance matrix which we now denote by CD satisfies

“3Bu

p——




s

(6.4) C.=6 vV, + G v

D 22 "2 23 '3
Let

Bll B12 - V; v§

o
= =
AN 0 V2 V3 ' N
B B

0 & B 32 33

32 33

It is easily seen that AlN is the coefficient matrix of a discrete exterior Neumann problem,

with the normal derivative approximated by the first order scheme described on p. 203 of [13].

Hence AN is nonsingular since both Bll and AlN are nonsingular and AN is reducible.
Clearly,
(6.5) AN=B+U'VT—UUTB.

Let uN be the solution of

(6.6) ANuN = fN 7
where fN is any mesh function that vanishes outside QQh. Suppose we make the Ansatz that
=1
7 =
(6.7) ue B = Up
where p satisfies
4 -1 T
(6.8) U AGB T Up=U fN.
By (6.5), (6.7) and (6.8), it is easily seen that (6.6) is satisfied. Let C_= UT A B_1U. It

N N

is clear that CN is nonsingular. By (6.4) and (6.5), we have

CT—D

N D
so that CD is nonsingular. Moreover, using an argument similar to the proof of lemma 6.8, we
have

=1 =1 ~q
= <

heg ll = lleg'll <n
for some positive integer g independent of h . The Theorem easily follows.
Theorem 6.4 Let @ € F(1). Assume that the G in equation (3.5) is the discrete Green's func-
tion of the entire plane. Then 'IC_IH < constant h-2 as h > 0 for any admissible scheme
of interpolating boundary conditions. Moreover, H C-IH < constant as h > 0 if either scheme
I.a or scheme I.b is used or if scheme II is used and ¢ F(0.4).
Proof: Let ( ¢ %¥(l). Assume that either scheme I.a or scheme I.b is used for interpolating

T

the boundary conditions. By (5.1), Bh + Bh > I. By assumption, there exists an € > 0 such

that K + KT > -I + £ . By lemmas 5.1 and 6.3-6.5, we see that for sufficiently small h ,

=20~




Kh + K§ > -1 + €/2. Hence, C + CT > €/2 and [!C_IH < constant as h -+ 0 . Similarly, it
can be shown that || c 1|| < constant if scheme II is used and @ ¢ J(0,4). By lemma 6.9,
||c- Il < constant - h_2

for any admissible scheme of interpolating boundary conditions.
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§7. Convergence of conjugate gradient iteration.

Let b denote the right hand side of the capacitance matrix equation multiplied by CT,

Let Q denote CTC. We are concerned with solving QD = b by the conjugate gradient method.
Detailed exposition of the method can be found e.g. in [11], [16], [17), [18) and [26]. A brief
description of the method plus a simple extension of the known results in the above references
can be found in Section 6 of [32]. It will be assumed that the readers are familiar with the
results in [32].

Let O denote the vectors approximating the solution ¢ generated by the conjugate
gradient process. Let R denote the set of real numbers and Lm denote the set of m vectors.
Let 2 = Rz + R and E : Lm * R be defined respectively by

z(a,b) = {(1 - Va)/(1 + va)}P;

Elp) = (1/2) (o, - ) Tolp, - ) .
It is shown in (32] that the following holds.
Theorem 7.1 Let K and Kl be the spectral condition numbers of Q and B:Bh respectively.
Let d. and d' denote the smallest and largest eigenvalues of B:Bh resepctively. Then given

€ > 0, there exists a positive integer independent of k and h such that

E(0 ) /E(p) < min{4z(k,2k), 42(k -26/d',2k-20x (M)} .

Here X()) = max H]l-k/%.l, i=1,...,N, where A,, i =1,...,N are the N eigenvalues of
i i
d*<i<d’
QO that lie outside of [4d ~£,d'+€] .

Corollary 7.1 Let @ = Bgl be used in equation (3.5). The number of iterations

needed to reduce E(Ok)/E(OO) to a given accuracy can grow no faster than constant-log m as

B T .

Proof. By Theorem 6.3, ‘X(X)| s h-kN, where k is a constant independent of h. The corollary
is therefore an easy consequence of Theorem 7.1.

Corollary 7.2 Let € 3’(8), B =1 if either scheme I.a or I.b is used; R = 0.4 if sheme

II is used. Then the number of iterations needed to reduce E(Dk)/E(OO) to a given accuracy

stays constant as h *0 if the G in (3.5) is the discrete Green's function on the entire plane.

Proof. By Theorem 5.1 and Theorem 6.4, C is uniformly well conditioned in the

spectral norm. The corollary is therefore an immediate consequence of Theorem 7.1.

=53f=




88 Survey of previous work on cavacitance matrix methods.

R. W. Hockney in [20] and (21] described a method of this type which can be used for the
solution of the interior Dirichlet problem for Laplace's equation. His capacitance matrices are
always positive definite symmetric. His method thus corresponds to a single layer Ansatz for
the Dirichlet problem. Buzbee, Dorr, George and Golub used a similar method in [8]. They made
the Ansatz

u=B v +B  UWp,
when B 1is nonsingular. Here W is a m X m nonsingular metrix. The choice W = I gives the
Wo;dbury formula.

Proskurowski and Widlund introduced the double layer Ansatz in [29]. The algorithm used
in their work differs from the one used here only in the discrete Green's function G and the
wT matrix. No theoretical analysis was presented in [29]. In [2]] the author analyzed the
method for the Neumann problem. The algorithm used in [32] is similar to the one used by

George in [15] which corresponds to solving the single layer Ansatz of the Dirichlet problem

in an iterative imbedding fashion.
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9 Numerical experiments

The results in this section were obtained on the CDC 7600 at Lawrence Berkelevy Laboratory

The model problem is the Laplace equation on ellipses with y = (a-b)/(a+b), where a,b are the

half axes. E(u)

* *
[| u-u IL where u is the true solution of -fu =0 on% , u=1 on 92

The mesh size h 1/32. The number of iterations of the conjugate gradient method is denoted

by n N(R) denotes the normalized norm of the residuals which is the L2 norm of the residual
divided by the square root of points in £. The numbers given for E(u) are acturally upper

bounds that describe the number of accurate digits only. The capacitance matrix is generated

explicitly and the discrete Green's function on the plane is used in (3.5).

TABLE I
Scheme I.a Scheme 1.b Scheme II

n Y N(R) E (u) N(R) E(u) N(R) E (u)

4 0.2 - —_— _ —_ 3.9-04 1.0-03

5 052 —_ —_— —_ _ 2.1-04 1.0-03

4 1 1.5-04 1.0-03 8.7-03 1.0-02 3.5-04 1.0-03

5 1 1.0-04 1.0-03 4.2-03 1.0-02 1.6-04 1.0-03 J
b

In Table I we see that typically it takes four iterations to achieve three digits accuracy.
5 " 2
The operation count of the conjugate gradient routine is therefore approximately 64n . The total
operation count (not counting that of setting up the matrix c¢) is therefore approximately

5n2109n + 80n2 for the Laplace's eguation and 10nzlog % 120n2 for the Poisson equation.
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